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Lewis Research Center 


SUMMARY 

An analysis is undertaken for the traveling-wave accelerator with the propellant 
having scalar conductivity. Two configurations of magnetic field a r e  studied. The first 
employs a field perpendicular to the line of motion and varying sinusoidally. When the 
conductivity is assumed proportional to the density, the analysis shows that the propel
lant is ejected in dense pulses, there is an upper limit on efficiency of about one-half, 
and the acceleration to wave velocity can be performed in one magnetic field wavelength 
if  a defined interaction parameter has a value of order one. Another accelerator using 
a magnetic wave such as might be produced by coils surrounding the channel has a some
what lower efficiency, which is due mainly to the loss of propellant to (or through) the 
boundaries. 

INTR ODUCTlON 

The desire for high specific impulses for the propulsion of interplanetary vehicles 
has led to research on several types of electromagnetic rockets. One of these is the 
traveling-magnetic-wave accelerator, which uses the principle of the induction motor. 
In this device a moving magnetic field passing through a conducting gas tends to drag the 
gas along with it. The force exerted on the gas depends on the velocity of the gas rel
ative to the magnetic field (see sketch). Only when the gas has reached wave velocity 
will the acceleration process stop; thus, the maximum impulse that can be imparted to 

the gas is determined by the wave speed.Current 

Force, Vwave 

Vrel. 

Several types of analysis have been made of devices 
of this kind. The stubies of Klein and Brueckner (ref. 1) 
and Matthews (refs. 2 and 3) consider the coils that es
tablish the magnetic field to be pulsed very rapidly in 
succession so that the propellant is accelerated by being 



pinched by each coil in turn. Treatments by Meyer (ref. 4) and Covert and Haldeman 
(ref. 5) regard the device as a pump that produces a steady flow against a pressure gra
dient. Fabri and Moulin (ref. 6) and Bernstein, et al. (ref. 7) have linearized the equa
tions of motion for small differences between wave and fluid speeds. 

This report attempts to preserve the nonlinear character of the equations of motion 
during an acceleration process that takes the fluid from nearly zero velocity to nearly 
wave velocity. Several simplifying assumptions about the properties of the fluid are 
made to make the analysis tractable. The analysis is applied first to an accelerator 
with the magnetic field normal to the axis of motion and operating at a high enough den
sity that the conductivity is a scalar; these a re  conditions characteristic of the experi
mental accelerator described by Heflinger and Schaffer (ref. 8). Secondly, there is a 
discussion of the accelerator with a magnetic field configuration similar to that of the 
device reported by Jones and Palmer (ref. 9), in which the magnetic wave has both longi
tudinal and transverse components. 

SYMBOLS 

A magnetic vector potential, Wb/m 


a initial coordinate of fluid particle, m 


B magnetic field, Wb/sq m 


BS 
steady uniform magnetic field, Wb/sq 


C cross section of accelerator, sq m 


C speed of light, m/sec 


d accelerator width, m 


F instantaneous force on propellant, N 


J conduction current, A 


current density, A/sq m 

wave number, l /m 

P pressure, N/sq m 

R gas constant, J/(kg) (OK) 

r velocity ratio, vo/vw 

T temperature, OK 

Ta average temperature, OK 

m 
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t time, sec 

tP 
time at which a density peak occurs, 

U dummy variable 

V velocity of fluid particle, m/sec 

vW velocity of magnetic wave, m/sec 

X length of accelerator, m 

X longitudinal coordinate, m 

Y transverse coordinate, m 

Z dummy variable 

n 

Z unit vector in z-direction 


a dimensionless initial coordinate, ka 


P magnetic field ratio, Bs/Bo 


E pertui-bation parameter, RTa/vw2 


sec 

c dimensionless transverse coordinate, ky 

rl efficiency, eq. (38) 

0 thrust, N 
2

K interaction parameter, uoBo/pow 

h wavelength of magnetic wave, m 

P permeability, H/m 

5 dimensionless longitudinal coordinate, kx 

P density, kg/cu m 

U conductivity, mho/m 

7 dimensionless time, w t  

phase of magnetic wave, kx - w t  

w angular frequency of magnetic wave, rad/sec 

Subscripts: 

0 initial value 

W wave 

x,y vector components 
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T,a! partial differentiation with respect to T,CL! 

Superscripts: 


0 , l  zero and first order in perturbation process 


average 

CONF I GURATION 

As a simple, idealized model of the traveling-wave accelerator, consider a two-
dimensional channel of infinite extent in the x-direction (fig. 1). An alternating wave of 
magnetic induction, which is assumed to be uniform across the channel, moves from left 
to right with speed vw. Fluid enters the channel f rom the left at the density po w d  
speed vo. When the fluid reaches the origin the magnetic field begins to act upon it, 
either because it has been suddenly made electrically conducting or  because it has been 
previously shielded from the field. During the acceleration of the fluid by the field, cur
rents flow in a direction normal to the plane of the motion and the field. The direction 
of these currents reverses as the fluid moves through a region in which the field reverses 
direction. The problem of closing the current loops at the sides of the accelerator is 
ignored here as well as the problem of the flow at the exit. If the two-dimensional ac
celerator is regarded as the limiting case of an annular accelerator as the two radii in
crease without limit, then the currents form closed loops about the axis and there is no 
problem of current-loop closure at the sides. 

MAGNETIC WAVE 

The equation that governs the vector potential ;A of a magnetic field B in the x, y
plane (fig. 1)is 

I 

-a - * X  

Figure 1. - Schematic of traveling-wave accelerator. 
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2 1 a2A - -pJV A - - - 

2 at2 

For a quasi-static field of wave-like form, the differential operators occurring in the 
equation have magnitudes specified by 

ay) 22 2 =e) 
at2 

The quantities A and J have the magnitudes 

A - Bh 

2 so that the three terms in the equation for A have the relative magnitudes 1, (v,/c) , 
and opvwh. Inasmuch as the desired magnitude of the wave velocity is vw - lo5 
meters per second and the speed of light is c = 3x108 meters per second, the second 
term has a relative magnitude and can be safely ignored. 
magnetic Reynolds number based on the wave speed and length. It is assumed that the 

The third term is a 

analysis is restricted to small values of this number: 

It follows from these considerations that the vector potential is determined by 

V 2A = O  

If A is required to have a wave-like character, 

a solution that is symmetric about the x-axis is 
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For the case of a narrow channel with 

d-<< 1 
h 

it is nearly correct to write 

Equation (2) represents the kind of magnetic field first introduced for traveling-wave 
machines by R. X. Meyer (ref. 4). 

LAGRANGIAN EQUATIONS OF MOTION 

Rather than to view this problem as the study of a velocity field, it proves to be con
venient to follow each fluid element separately - the so-called Langrangian viewpoint. 
Although both approaches are fully described only by a set of nonlinear partial differen
tial equations, with suitable approximations the Lagrangian equations of motion can be 
reduced to a set of ordinary differential equations. Averages over all the fluid ele
ments then yield mean values for the accelerator thrust, efficiency, etc. 

The Lagrangian equations of motion (Lamb, ref. 10) for a one-dimensional magneto-
hydrodynamic flow a r e  as follows: 

Continuity: 

d ( , g = O  (4)at 

Momentum: 

2a xp - + - = aap v 
at2 ax (lv - 9.” 

The continuity equation contains a derivative with respect to the distance a, which 
represents the original position of the fluid element, and, therefore, acts as a label to 
distinguish fluid elements throughout their motions. It is convenient to take -03 Ia 5 0 
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so that the left semiaxis (fig. 1)may be regarded as occupied by a uniform fluid that at 
time t = 0 is moved at constant speed vo into the accelerating chamber x 2 0. If C 
is the cross section of the accelerator, then the mass associated with fluid elements in 
the incremental distance A a  is poC Aa. During the acceleration this same mass is 
represented by pC Ax. Thus, taking the limit as A a  becomes very small yields 

which is a statement equivalent to equation (4) along with its initial condition. 
The momentum equation (5) shows that the Lorentz force leads to both an accelera

tion and a compression of the fluid. The velocity (vw - &/at) is the relative velocity be
tween the fluid and the wave. At the point where the fluid enters the accelerating 
chamber the relative velocity is greatest, and therefore the force on the fluid is maxi
mum. Later, as the fluid velocity approaches wave velocity, the force diminishes and 
the fluid coasts along with the field. 

NONDIMENSIONAL EQUATIONS OF MOTION 

Let the dimensionless independent variables be defined as 

and the dependent variable as 

The introduction of equations (3) and (6) to (8) into the momentum equation (5) yields 

In a practical accelerator it is necessary that the terms representing the Lorentz force 
and the inertia force have the same order of magnitude. Thus, since the derivatives of 
5 a re  of order unity, it is necessary that 
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Combined with the provision of small magnetic Reynolds number (l), this condition re
quires 

2 
pvw << 1 
B2/P 

so that equation (10) becomes 

povovw << 1 
B,”/P 

The condition (12) on the parameters of the accelerator requires that the flux of momen
tum in the fluid be very small compared to the magnetic pressure. If this condition is 
not met, the currents in the propellant distort the magnetic field, and the present anal
ysis is inadequate. 

The second term in equation (9) represents the effect the fluid elements have on each 
other’s motion through the exertion of pressure. The first factor, p /pvt ,  in the term 
is the square of the ratio of the local speed of sound to the speed of the wave; i t  can be 
anticipated that this will be very small. The second factor, p/po, is on the average 
about vo/vw, also a small number. These factors should dominate the logarithmic 
derivative. Moreover, if  the temperature throughout the gas does not vary too greatly 
from an average value Ta, it is approximately correct to set  p = pRTa and to write 
for the pressure-gradient term (by using eq. (6)) 

An estimate of the dimensionless parameters that control the sizes of the various 
effects discussed previously can be obtained by taking the following typical operating con
ditions: 
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Propellant inflow, kg/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Magneticwavelength, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Cross-sectional area, sq m . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 ~ 1 0 - ~  
Magnetic field maximum, Wb/sq m . . . . . . . . . . . . . . . . . . . . . . . . .  0 .03  
Velocity of magnetic wave, m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . .  lo5 
Conductivity, mho/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  lo4 
Angular frequency of magnetic wave, rad/sec . . . . . . . . . . . . . . . . . . .  39~x105 
Initial density, kg/cu m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  loe5 
Molecular weight, kg/g mole (argon). . . . . . . . . . . . . . . . . . . . . . . . .  0.04 
Average temperature, 0K .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2000 

Under these conditions 

The interaction parameter K (eq. (13)) has the appropriate size for effective accelera
tion. The condition of small Reynolds number as expressed in equation (12) is also met 
(eq. (14)), so there should not be large-scale distortions in the magnetic field, and 
equation (2) (or (3)) should suffice as a description of the field. Moreover, the pressure-
gradient term has a very small coefficient E (eq. (15)); this term can, therefore, be 
expected to remain small throughout the motion. A final observation is that, under the 
conditions given previously, the self-collision time of the atoms is comparable to or 
greater than the time they remain in the accelerator. Consequently, any energy added 
to the gas during the acceleration process will not be transformed to thermal motion of 
the atoms, and the assumption of a more or less  constant temperature Ta should not 
cause great error.  

It will be noted that the interaction parameter K (eq. (13)) has been evaluated in 
terms of the conductivity cro and density po at the entrance to the accelerator rather 
than locally as required by condition (10). It is assumed hereafter in the analysis that 
the ratio of conductivity to density is a constant throughout the flow, or 
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This assumption is made to simplify the analysis - specifically, to help reduce the 
partial differential equation of motion to an ordinary differential equation. The effect of 
this assumption on the calculated motion of the fluid will be estimated only after an ex
amination of the results. 

With the assumption of equation (16) for the conductivity, the magnetic Reynolds 
number for the forgoing example is puAvw =: 0.25. This estimate shows that a moderate 
amount-of field distortion can be expected, and that distortion is more likely than would 
be surmised from equation (14) alone. 

It is convenient to make one more change in the dependent variable to obtain a final 
form for the momentum equation. Let 

where cp is the phase of the magnetic wave at  time T and position 5 of a particle. 
The introduction of equations (12), (15), and (17) into the momentum equation (9) yields 

The initial conditions accompanying this equation a re  found by considering the fluid 
particle that arrives a t  the origin (8 = 0) a t  time t. Its particle number (initial location) 
is 

a = - vot 

or 

Equation (19) describes the initial curve in the a,r-plane, along which the phase q 
and its derivatives must be given: 

a 

c p = - r = r 
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In equation (21), &$/a7 is the fluid velocity normalized to the wave velocity. The con
tinuity equation (6) has been employed in equation (22). Equations (18) to (22)comprise 
the complete boundary-value problem for the system of fluid particles which is accel
erated by the magnetic wave. 

PERTUR BAT ION ANA LYSIS 

Inasmuch as a small dimensionless number E arises naturally in the formulation of 
the equation of motion (18), i t  is convenient to regard it as a perturbation parameter for 
reducing the partial differential equation to a system of ordinary equations. If the de
pendent variable is expanded in powers of E, 

q=(P0 + E ( P  
1 + . . .  (23) 

the coefficients of the f i rs t  two powers in the momentum equation (18) are  as follows: 

For eo: 

For E ~ :  

The corresponding initial conditions a r e  
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The zero-order equation of motion (24) represents the motion of one particle alone 
that is unaffected by the presence in the channel of other particles; this is the result of 
the disappearance of the pressure-gradient term to this order of magnitude. Physically, 
the meaning is that the magnetic wave moves so fast (with speed vw) and accelerates the 
fluid so quickly that the forces due to pressure gradients, which propagate with the 
speed of sound, do not have time to readjust the fluid distribution during the acceleration 
process. Of course, this condition will no longer hold after the fluid has been accel
erated to nearly the wave speed, for then ( a q / a T )  = 0 and the Lorentz force term is 
negligible. The effects of pressure gradient will then take over. 

The first-order equation (25) accounts for the effect of pressure gradient; that is, 
q1 makes a correction on qo to account for the neglect of the pressure term in equa
tion (24). Moreover, both equations (24) and (25) can now be regarded as ordinary dif
ferential equations in T because the partial derivatives of any qn with respect to the 
material coordinate a! a re  always transferred to the equation of order n + 1. The 
initial conditions (eqs. (20) and (22)) a re  satisfied entirely by q 0. The higher order qn 
have homogeneous initial conditions. 

The first  integral of the zero-order equation is (when using the notation q: for 

a4n0/w 

The variable T may be found as a function of qo by integration from the initial condi
tion (26). Then 
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Equation (29) specifies the time T at which the ath fluid element arrives at the 
location in the wave having phase cp 0. The corresponding position and velocity are, to 
zero order in E, 

and 

v = V W t T  =_ VW(cpT0 + 1) 
(31) 

The only remaining piece of information to be found is the density. When equation (29) is 
differentiated with respect to ct and when the expression for the density (eq. (6)) is 
used, there results to lowest order in E 

This expression for the density, when evaluated on the initial curve, conforms to the 
initial condition (eq. (22)). 

The first-order equation (25) with initial conditions (eq. (27)) can also be integrated 
directly. The first integral is 

and the second integral is 
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For the
0
explicit evaluation of the integrals in equations (33) and (34), i t  is necessary to

0
have qaa as well as the expressions (eqs. (28) and (32)) for 'p, and q:. Differentia
tion of equations (28) and (32) yields 

qaa = K (I:- sin2 Q! -
1 ro r 


To first order, the position, density, and velocity of a particle can now be written 
in terms of q1 and i t s  derivatives as 

5 = q 0 + t q1+ 7  

0 1 
-= 'pa +�'Pa 
P 

14 




1-V = 1 + 9,0 + �9, 
vW 

EFFICIENCY AND THRUST 

Energy is being added to the accelerated fluid in two ways: the kinetic energy is 
* being increased by the acceleration process, and heat is being added by Joule dissipation. 

Since the propellant atoms a r e  isothermal, the heat added must manifest itself in excita
tion and ionization of the fluid and in electron heating. When it is assumed that the heat 
added is sufficient to maintain the conductivity of the propellant and when the loss of 
kinetic energy by drag at the walls is neglected, the efficiency is 

kinetic energy added~~'= kinetic energy added + Joule heat added 

The kinetic energy added per unit mass is 

The Joule heat per unit mass, J2/ap, when integrated over a particle trajectory is 

0 0 


To zero order in E ,  
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2 0  0 2' (cp! + + sin cp d q  - r 

After the integration in the denominator is performed, it is found that 

cp,+l+r t , + r0 

--r l =  

2 2 
(38) c 

The efficiency to order zero associated with a fluid particle is simply the average of the 
final and initial dimensionless velocities of the particle. Since the dimensionless veloc 
ity has an upper limit of unity and r is very small, the efficiency has an upper limit of 
about 1/2, a result previously obtained by other investigators (ref. 8). 

An average efficiency may be obtained for any station along the accelerator by 
averaging over all particles that enter during a half cycle of the magnetic wave. Thus, 

where 

The thrust of the accelerator is calculated by finding the total force acting on the 
fluid at any one time and then averaging over a period. If X is the length of the accel
erator and C is its cross  section, the force acting at any time is 

2F = f o ( v w  -v)B C dx = - o v B 
0 0  0 a/r=-,  

The average of this force over a period of the magnetic field is the thrust 

@ = -
21T 

F(T)dT 
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c 

Because the force is periodic it is permissible to change the a rea  of integration in the 
a,7-plane to represent the integration over the paths of a set of particles which come 
into the accelerator during a half cycle of the magnetic field. Then 

Equation (28) has been used to obtain the last integral. If the definition of K is 
employed, then 

Thus, the thrust is jus t  the mass flow into the accelerator times the average increment 
of specific impulse, a result which bears a close resemblance to that for  a steady flow. 
It should be emphasized, however, that the average appearing here is not a time average, 
but an average over fluid elements of equal mass. 

NUMERICAL RESULTS 

The integrals appearing in equations (29) and (32) for the zero-order motion of 
50 fluid elements in a wave half cycle have been performed. These particles enter the 
accelerator at uniformly spaced times of -a/r = 0, r/50. . . r. Along with equa

. 6  
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F igure 2. - Average eff iciency of traveling-wave accelerator. Velocity ratio, vohlw, 0.01. 
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tion (28) these integrations make it possible to compute the zero-order velocity, effi
ciency, mass density, and current density associated with each element of fluid. Inas
much as efficiency and thrust are linearly related according to 

0= 2povovwC(@- r) 

it is sufficient to work with the efficiency. 
Figure 2 shows how the efficiency improves with length of run down the channel for 

various interaction parameters K. The waviness in the curves can be attributed to the 
periodic nature of the driving force. Generally, an accelerator can be expected to be an 
integral number of waves in length in order that the driving coils can properly establish 
the traveling wave. For a one-wavelength accelerator, a strong interaction parameter 
such as K = 1.0 seems to be greater than required to successfully accelerate the fluid 
in the single wavelength. At the other extreme, a value K = 0. 1 does not provide enough 
interaction between wave and fluid to get the fluid near the wave speed at the exit. For a 
one-wavelength accelerator, it appears that some intermediate value of the interaction 
parameter, say K = 0. 3 to 0. 5, would be appropriate. 

Figure 3 shows how the field, velocity, current density, and mass density vary in 
time at various stations and interaction parameters. The most striking features of these 
distributions a r e  the sharp accumulations of mass and current. The peaking of these 
quantities becomes more severe as the fluid moves down the accelerator. Only when the 
fluid has nearly reached the wave velocity will pressure effects, as represented in first-
order calculations, take over and redistribute the fluid in a more uniform manner in the 
beam. The ratio of the mass density in the peak to the mass density midway between 
peaks can vary over several orders of magnitude; values range from 30 to 3000 in the 
numerical examples computed. The fluid elements, which enter the accelerator chamber 
coincident with a node in the magnetic wave, form the centers of the regions of high den
sity. 

Although the first-order function p1 has not been calculated, the right side of 
equation (25), which determines its magnitude, has been computed at every step in the 
calculations. This term, which may be regarded, alternatively, as the neglected term 
of the zero-order equation (24), is generally of order unity, except possibly when a fluid 
element enters the accelerator in which case it may be as high as 90. This is still well 
within the allowable range set  by the estimate of E (eq. (15)). Therefore the zero-order 
solution should be a good approximation to the complete solution; the pressure effects 
a r e  not really important. 

A comparison of the present work with the computations of Fabri and Moulin (ref. 6) 
is made in figures 4 and 5. There is a limit to the aptness of such a comparison because 
the analysis of Fabri and Moulin is valid only when the difference between initial fluid 
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5, 3.0; velocity ratio, vo/vw, 0.01. C, 6.0; velocity ratio, volvw, 0.01. 

Figure 3. - Time variation of field and f lu id  properties in traveling-wave accelerator. 
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velocity and magnetic wave velocity is small, whereas the present analysis holds when 
the magnetic wave velocity is much greater than the speed of sound and, therefore, the 
inlet velocity. The present analysis, consequently, drops the pressure-gradient term. 
The example used for comparison is in the range of inlet velocities for which the assump
tions at Fabri and Moulin a r e  valid. Nevertheless, the results of the two computations 
show much similarity. Figure 4 shows maximum and minimum velocities observed at 
ziny station along the accelerator, and figure 5 shows maximum and minimum densities. 
The two solutions yield much the same variation of the extreme values near the inlet, 
but further downstream the effect of the pressure-gradient term is very apparent in the 
solution of Fabri and Moulin. The relatively narrow bands of velocities and densities 
in that solution must be due principally to the tendency of the pressure gradient to keep 
the flow uniform. Although the time-average velocity has not been computed in the 
present computations, it appears from figure 4 that the average velocities for the two 

. 

methods should be in good agreement. 
The curves of figures 4 and 5 also show that the maximum velocities and densities 

for the two methods differ more in the cited example than do the minimum values. This 
fact may be associated with the assumption in the present work that the conductivity is 
proportional to the density, as contrasted to the assumption of Fabri and Moulin of con
stant conductivity, for the former assumption leads to regions of high coupling between 
fluid and wave wherever increases in density occur. Eventually a large fraction of the 
fluid accumulates in high-density regions which a r e  moved close to wave speed. If the 
minimum velocities and densities for the two methods a r e  generally in more agreement, 
as is indicated by this one example, then the present method will  give a higher estimate 
of the efficiency of the acceleration process than would be expected under an assumption 
of constant conductivity. 

In considering the previous example as described by the two methods of calculation, 
it should be kept in mind that the example is not a very realistic one because of the small 
differences in velocity between wave and fluid. It is chosen to make comparison easy 
with the method of Fabri and Moulin. The present method, valid for large velocity dif
ferences, quite correctly ignores pressure gradients under practical conditions. 

One other question that ar ises  in connection with the assumption of conductivity pro
portional to density is whether the Joule heating can provide sufficient energy to keep the 
gas in a state of high conductivity as the postulate requires. A simple calculation suf
fices to show that it probably can. From equation (37) the energy dissipated per unit 

2mass over the time the gas is in the accelerator is of order vw/lO. For argon this is 
equivalent to about 40 electron volts per atom. Since most of the dissipation occurs near 
the entrance and the decay time for free electrons in argon is second as opposed to 

second acceleration time, there appears to be enough energy to keep a sufficient 
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fraction (say 1percent) of the atoms ionized and to ra i se  the electron temperature, even 
i f  excitation of atoms absorbs a large amount. 

LON GlTU DlNAL -WAVE ACCELERATOR 

Another form of traveling-wave accelerator uses a moving magnetic field with a 
potential 

BO
A = k sin <p sinh ky 

as contrasted to equation (2). The field resembles qualitatively that produced by coils 
wrapped around the channel a t  equal intervals Ax  and having equal phase differences. 
In addition to the traveling magnetic wave, a uniform field Bs parallel to the direction 
of motion may be impressed to help contain the fluid and keep it from the walls. The 
equations of motion are ,  neglecting pressure gradients, 

-X
P .* = - (k - vw)B2 

i- i B  B 
(3 Y X Y  

.. . 
y = (X - vw)B B - 2  

D X Y  
- yBx 

and the initial conditions on each fluid element a re  

The components of magnetic field a r e  

Bx = - Bo sin cp cosh ky + BS 

B
Y 

= Bo cos cp sinh ky 

In terms of the definitions, 
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5 = ky 

the dimensionless equations of motion are,  for small g ,  

.. 2 2 
cp cos cp sinh L + k(sin cp cosh b - @cos cp sinh L1 

.. 
5 = - ~b(sincp cosh E - P)cos cp sinh + &sin cp cosh L - P )2] 

The efficiency for a particle is given by 

where 

W J[@H = m2 cos q sinh 5 + i(sin q cosh 5 - P)12 d7 

The equations of motion (39) and (40) have been integrated for two cases - one with a 
confining field ( P  = 1) and one without (P = 0). In each case the calculations have been 
terminated at a lateral position designated as the TtwallTT;that is, no particles a r e  con
sidered which enter at a distance farther fro m the center line than the wall position, and 
the trajectory of any particle is no longer followed after it crosses the wall ordinate. 

In the first  of these examples, the width of the accelerator is about h/10. Trajec
tories have been obtained for fluid elements entering at both the wave node and the wave 
crest. The lateral displacements of the elements at the entrance are 5 = 0.01, 
0 . 0 2  . . ., 0.29,  0 .30.  For the second example, an accelerator with no confining field, 
the width is approximately 0. 6 h and the entrance ordinates a r e  = 0. 1, 0 . 2  . . ., 
1.8. The width, in this case, corresponds to the optimum coil radius of 0. 3 h found by 
Palmer, Jones, and Seikel (ref. 11) for the efficient production of a traveling wave by a 
system of equally spaced circular coils. In the second example, also, trajectories for  
fluid elements entering at the wave crest  and node have been found. For both cases the 
interaction parameter is K = 1 and the velocity ratio is r = 0.01.  
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Figure 6. - Propellant trajectories in  longi tudinal  wave accelerator. 
f ie ld ratio, B,/B, 1; velocity ratio, vo/vw, 0.01. 
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Figure 7. - Loss of propellant enter ing at wave node to walls of longi tudinal  wave 
accelerator. Phase of magnetic wave, y, zero when dimensionless longi tudinal  
distance, �,,i s  zero; accelerator width, approximately one-tenth wavelength of 
magnetic wave, h; interact ion parameter, K, 1; magnetic field ratio, Bs/B, 1; 
velocity ratio, vo/vw, 0.01. 

Figure 6 shows propellant trajectories in the first case when there is a confining 
field. It is apparent that eventually all fluid elements will strike the walls. A large 
fraction is lost even on the first undulation, which occurs within one-tenth of a wave
length from the entrance. This effect is displayed better in figure 7, which shows the 
fractional loss as a function of accelerator length. It is apparent that the inclusion of a 
moderate (P  = 1) confining field cannot prevent the loss to (or through) the boundaries of 
the accelerator of a sizable fraction of the fluid. The efficiencies associated with the 
fluid elements at the time they hit the wall a re  15 percent or  less. Calculations for 
fluid elements entering at the wave crest  show essentially the same behavior (fig. 8), 
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except that they are thrown to the walls 
roughly a quarter of a cycle earlier. 

-. When the accelerator channel is wide, as 
specified in the previous second example, the 
trajectories of the fluid elements show a con
siderable variation, which depends on the 
entrance coordinate g. Some examples a r e  
given in figures 9(a) and (b). The time that 
each particle is in the accelerator before 
striking the wall can be estimated by the num
ber of undulations it undergoes. Each r ise  or  
fall represents the passage of one-fourth 

. 8  
0 . 4  

I-
1 
I2.0 wavelength of the magnetic field and, there-

Dimensionless longitudinal distance, �, = 2nxh fore, a quarter period of time. Although a 
I I I I fluid element close to the centerline may
0 .1 . 2  . 3  

Number of wavelengths reach the wall at an earlier axial position 
Figure 8. - Loss of propellant enter ing at wave crest to than an element further out, it does so at a 

walls of longitudinal wave accelerator. Phase of magnetic 
wave, y, n/2 when  dimensionless longitudinal distance, later time. An interesting feature of the tra-
C, i s  zero; accelerator width, approximately one-tenth 
wavelength of magnetic wave, in teract ion parameter, jectories shown is that they all terminate in a 
K, 1; magnetic field ratio, E@, 1; velocity ratio, portion that is nearly rectilinear motion. 
vo/vw, 0.01. 

Moreover, this motion is found to take place 
at nearly constant velocity. In this last portion of its flight, each fluid element affixes 
itself to a magnetic field line and rides out of the accelerator at constant velocity, much 
as was  the case in the normal-field accelerator, but in this case the velocity is not paral
lel to the accelerator axis. 

Figures 10 and 11 show the fractional loss to the wal ls  for fluid entering at the wave 
nodes and crests,  respectively. There a r e  large losses to the walls again; however, the 
average efficiency of the particles is higher than in the narrow channel case. For ex
ample, the fluid elements that reach an axial position of one wavelength (< = 2.n) have an 
average efficiency of about 0.4, and, if no contribution is allowed from those elements 
which strike the wall, the average efficiency for all is about 0. 26. This is a consider 
able improvement over the previous case and reinforces the findings of Palmer, Jones, 
and Seikel (ref. 11) that the wider accelerating channel should be the more efficient one. 

Finally, it appears that a confining field is less  effective in containing the propellant 
than is the widening of the channel. A comparison of figures 7 and 10 and figures 8 
and 11shows that most of the propellant in the narrow accelerator having a confining 
field is lost within a wavelength, whereas in the wider channel having no confining field a 
correspondingly high level of loss is not reached for several wavelengths. 
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(a) Part icles enter ing at maximum longi tud ina l  field. Phase of magnetic wave, y, 7d2 when dimensionless longitudinal distance, 5, 
is  zero. 

Figure 9. - Propellant trajectories in longi tud ina l  wave accelerator. Accelerator width, approximately six-tenths wavelength of mag
netic wave, h; in teract ion parameter, K, 1; magnetic f ield ratio, B,/B, 0; velocity ratio, vo/vw, 0.01. 
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(b) Particles enter ing at m in imum longitudinal field. Phase of magnetic wave, y, zero when  dimensionless longitudinal distance, C, 
i s  zero. 

Figure 9. - Concluded. 
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Figure 10. - Loss to walls of propellant enter ing at m in imum longitudinal field. Phase of 
magnetic wave, v,zero when  dimensionless longitudinal distance, 5, i s  zero; accelerator 
width, approximately six-tenths wavelength of magnetic wave, h; in teract ion parameter, 
K, 1; magnetic field ratio, Bs/B, 0; velocity ratio, vo/vw, 0.01. 
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Figure 11. - Loss to walls of propellant enter ing at maximum longitudinal field. Phase of 
magnetic wave, y, 7d2 w h e n  dimensionless longitudinal distance, $, i s  zero; accelerator 
width, approximately six-tenths wavelength of magnetic wave, h; in teract ion parameter, 
K, 1; magnetic f ie ld ratio, Bs/B, 0; velocity ratio, vo/vw, 0.01. 
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... ._  ...-... 

CONCLUDING REMARKS 

Principally, the limits on the accuracy of the analysis made here come from the 
assumption that the conductivity is proportional to the density. The assumption was 
made for convenience in reducing the equation to manageable form, and it is difficult to 
say just how the conductivity should be represented in an unsteady, nonuniform situation 
as is presented in the accelerator. The most that can be said of the effect of the con
ductivity assumption is that it probably exaggerates the variations of density and velocity 
that occur in the flow, although the average values should be representative. In this con
nection, the upper limit of 0. 5 on the efficiency is a good indication of the performance 
of the normal-field accelerator. 

The solutions to the longitudinal-wave accelerator have a further limitation in the 
amount of information they can offer because it is not possible to obtain the density with
out first finding the trajectories of a very great many fluid elements. Nevertheless, the 
relative efficiencies for  the two calculated cases - narrow and wide channel - are  suffi
cient to illustrate that accelerators of greater ratio of coil radius to wavelength a r e  more 
efficient, which is just a reflection of the increased efficiency of acceleration of a fluid 
element with the starting value of y or c,  and the attendant increase in the normal 
component of field. Even the wide-channel accelerator of this type, however, attains 
only about one-half (0. 26) the efficiency reached by the normal field configuration, and 
then only if the accelerator is several wavelengths long. 
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